

Data Visualization and Interactive Science

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

A Samuel Pottinger September 24, 2024 Schmidt Center for Data Sci and Env EcoTech UC Berkeley Workshop Series

I'm a data scientist, software engineer, and information designer.

Sam Pottinger A more human-centered AI/ML https://gleap.org

UC	Berkeley	Data	+	Environment
	EVERY	Data	+	Synthetic Biology
	IDEO	Data	+	Design
	Plenty	Data	+	Indoor Agriculture
	Apple	Data	+	Engineering
	Google	Data	+	Visualization
	LabJack	Data	+	Hardware

Processing | Data + Love in Java Sketchingpy | Data + Love in Python

Today

4 different viewpoints on what data visualization is and how to do it well.

Ideas for how to explore data visualization (and interactive science) at a deeper level within your work.

Resources to continue your data viz journey.

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

Discussion Portion

Data Visualization in 4 Acts

As representation

As task

As message

As dialogue

Why and how different groups do data visualization. How you can think about it in your work.

Year	Number of Wolves	Number of Moose
1980	50	664
1982	14	700
1984	24	811
1986	20	1025
1988	12	1653
1990	15	1216
1992	12	1600
1994	15	1800
1996	22	1200
1998	14	700
2000	29	850
2002	17	1000
2004	29	750
2006	30	385
2008	23	650
2010	19	510
2012	9	750
2014	9	1050
2016	2	1300
2018	2	1500

Premise: The human visual system is good at spotting patterns.

What is the relationship between wolves and moose in Isle Royale?

What year saw the most moose?

Year	Number of Wolves	Number of Moose
1980	50	664
1982	14	700
1984	24	811
1986	20	1025
1988	12	1653
1990	15	1216
1992	12	1600
1994	15	1800
1996	22	1200
1998	14	700
2000	29	850
2002	17	1000
2004	29	750
2006	30	385
2008	23	650
2010	19	510
2012	9	750
2014	9	1050
2016	2	1300
2018	2	1500

Premise: The human visual system is good at spotting patterns.

What is the relationship between wolves and moose in Isle Royale?

What year saw the most moose?

		Number of			
Year	Wo	lves	Мос	se	
1980		50	664		
1982		14	700		
1984		24	811		
1986		20	1025		
1988		12	1653		
1990		15	1216	_	
1992		12	1600		
1994		15	1800		
1996		22	1200	_	
1998		14	700		
2000		29	850		
2002		17	1000		
2004	-	29	750		
2006	_	30	385		
2008		23	650		
2010		19	510		
2012		9	750		
2014		9	1050		
2016		2	1300		
2018		2	1500		
	500	0	0	1800	

Premise: The human visual system is good at spotting patterns.

What is the relationship between wolves and moose in Isle Royale?

What year saw the most moose?

Example: This first way of thinking about data visualization focuses on encoding.

How do we "map" attributes of data to visual attributes?

What visual encodings are better than others?

How do we make visualizations accessible?

Figure 1. Elementary perceptual tasks.

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

WILLIAM S. CLEVELAND and ROBERT McGILL*

The following are the 10 elementary tasks in Figure 1, ordered from most to least accurate:

- 1. Position along a common scale
- 2. Positions along nonaligned scales
- 3. Length, direction, angle
- 4. Area
- 5. Volume, curvature
- 6. Shading, color saturation

Figure 1. Elementary perceptual tasks.

Offers: Flexibility beyond the chart wizard but principles to guide us.

Gives us the basic building blocks for how humans process visual information but lets us use that understanding in many different ways.

The following are the 10 elementary tasks in Figure 1, ordered from most to least accurate:

- 1. Position along a common scale
- 2. Positions along nonaligned scales
- 3. Length, direction, angle
- 4. Area
- 5. Volume, curvature
- 6. Shading, color saturation

		Chart Type			8
Chart Type Data Range Data Series Chart Elements	Choose a Chart Type	3 JD Look Realistic ape ar ylinder one yramid	Norma	J.	×
	Неір		< Back Ne	ext > Cancel	Finish

How to use it: Learn more about human visual system to understand when to use different chart types or encoding devices.

The following are the 10 elementary tasks in Figure 1, ordered from most to least accurate:

- 1. Position along a common scale
- 2. Positions along nonaligned scales
- 3. Length, direction, angle
- 4. Area
- 5. Volume, curvature
- 6. Shading, color saturation

Colin Ware

Summary: We use graphics representation of data.

Visual processing

Encoding

Data ink

Accuracy

Data Visualization in 4 Acts

As representation

| As task

As message

As dialogue

Why and how different groups do data visualization. How you can think about it in your work.

Premise: Visualizations are part of a broader user journey.

A structured way to think about the user in the context of data visualization.

Example: Rachel Binx at NASA.

Looking at "event records" sent from spacecraft to NASA.

Interviewed a bunch of users to figure out how they worked with these data previously (log files).

Binx talks about how people had never seen their data before visually and the periodicity of events was revelatory for example.

Boils down into "tasks" the user executes and build user experiences to support those tasks.

From domain to abstraction

 Data/task abstraction
domain characterization: details of application domain Visual encoding/interaction idiom -group of users, target domain, their questions & data Algorithm · varies wildly by domain • must be specific enough to get traction domain -domain questions/problems abstraction · break down into simpler abstract tasks abstraction: data & task -map what and why into generalized terms · identify tasks that users wish to perform, or already do • find data types that will support those tasks - possibly transform /derive if need be 1:39 / 14:20 CC Task Abstraction (Ch 3), Visualization Analysis & Design, 2021 Tamara Munzner Subscribe n⁻/- 119 $\overline{\mathbf{y}}$ Share → Sh 31.3K subscribers 14K views 2 years ago Task Abstraction Lecture, 2021. Task Abstraction (Ch 3), Visualization Analysis & Design by Tamara Munzner, CRC/Routledge 2014. More info including editable slides and free CC-BY diagram figures on book page: https://www.cs.ubc.ca ...more

...

Offers: Structured evidence-based understanding of the user to support them in their tasks.

Oritents around domains, tasks, questions, and data.

Fits within a broader modern user experience design dialogue.

How to use it: Chart out the tasks that you imagine your audience taking and what questions they are asking. The simplest form is chat with some users before building your graphics and later walk through the journey of how those would be answered.

Tamara Munzner

Summary: We use visualizations in tasks.

Domains, questions, data, techniques

User-Centered Design

User journeys

Situated use and diary study

How can data tell stories?

Data Visualization in 4 Acts

As representation

As task

| As message

As dialogue

Why and how different groups do data visualization. How you can think about it in your work.

U.S. GUN KILLINGS IN 2018

11,356 PEOPLE KILLED

Premise: Forms given to data enable authors to convey a message to a reader.

How does the reader feel when going through a visualization?

Where is efficiency helpful but where does it conflict with the message of the piece?

How might we defy reader expectations or have them confront prior held beliefs?

guns.periscopic.com

A Treaty To End Plastic Pollution. Forever.

World leaders must take steps to drastically limit the impact of plastics on the environment and human health

CHOOSE OUR FUTURE

Draw your line on the chart below

Offers: A way to convey messages with logos and pathos.

How to invoke emotional response.

How to challenge reader assumptions.

How to understand the process by which messages and meaning are interpreted.

How to use it: Chart out the emotional journey you imagine your readers taking. Ask how the graphical decisions help deliver that emotional experience or detract from it. Make choices which trade off the emotional experience with the most direct representation of the data.

Andy Kirk

Summary: Visualizations are data experienced.

Movements

Diagrammatic reading

Sketch-based development

Social mediation

Data Visualization in 4 Acts

As representation

As task

As message

| As dialogue

Why and how different groups do data visualization. How you can think about it in your work.

Premise: Data as humane dynamic media.

The designer creates media for thought, elevating the reader to an author of tools and co-creator of meaning.

Motivations for Play in Online Games

Author: Nick Yee AUTHORS INFO & AFFILIATIONS

Publication: CyberPsychology & Behavior • https://doi.org/10.1089/cpb.2006.9.772

A 41,820 / 1,242

Abstract

An empirical model of player motivations in online games provides the foundation to understand and assess how players differ from one another and how motivations of play relate to age, gender, usage patterns, and in-game behaviors. In the current study, a factor analytic approach was used to create an empirical model of player motivations. The analysis revealed 10 motivation subcomponents that grouped into three overarching components (achievement, social, and immersion). Relationships between motivations and demographic variables (age, gender, and usage patterns) are also presented.

Permissions & Citations 33

GET ACCESS

Example: Finding a solution to the plastics crisis.

A layered experience in which the user can simulate different policies.

An invitation to build outside the original designer's intention.

https://global-plasti cs-tool.org

Progress:

Keep going! You have spent 0% of your budget (0% on rezoining and construction subsidy, 0% on transit improvement and subsidy). Goal: 80% choose supermarket. You can also reset your design and try again.

Sumn

74% c

24% c

2% m

Buildi

I eft cl

O Su

() Fa

O R€

O R€

Trans

Invest

travel

Offers: Co-creation and user agency.

Often leaning on game design concepts.

How to teach with/without tutorializing.

How to create spaces to interrogate assumptions.

How to build media to be repurposed.

How to design experiences where the user is co-author. **How to use it:** Think about how your audience could be co-creators with you. What kinds of graphics or experiences allow them to ask questions beyond what you presented. How could your work empower them to take your results and bring them into their own work?

Bret Victor

Media for Thinking the Unthinkable

Bret Victor

April 4, 2013 MIT Media Lab **Summary:** Create spaces for the user to converse with data.

Kinesthetic projection

Ludonarrative

Player agency

Loop-based design

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

Summary

How to use it: Learn more about human visual system to understand when to use different chart types or encoding devices. **How to use it:** Chart out the tasks that you imagine your audience taking and what questions they are asking. The simplest form is chat with some users before building your graphics and later walk through the journey of how those would be answered.

How to use it: Chart out the

emotional journey you imagine your readers taking. Ask how the graphical decisions help deliver that emotional experience or detract from it. Make choices which trade off the emotional experience with the most direct representation of the data. How to use it: Think about how your audience could be co-creators with you. What kinds of graphics or experiences allow them to ask questions beyond what you presented. How could your work empower them to take your results and bring them into their own work?

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

Questions

If you want to learn more...

Interactive Data Science

Hello! I'm Sam. I work at the Schmidt Center for Data Science and Environment at UC Berkeley. This website discusses my course, workshops, and lectures on interactive data, interactive science, and data visualization. Get notified about upcoming courses and workshops!

Why / Upcoming / Materials / Sign Up / About

Students: I have upcoming lectures, workshops, and a **Spring 2025 course**. There's more details and a form at:

https://interactivedatascience.courses

Faculty and staff: we have a Slack!

https://dse.berkeley.edu/about/community

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

Hands-On Portion

Break into three groups: try out a visualization and report back.

en-roads.climateinteractive.org

What emphasizes efficiency?

What are the tasks imagined by the designers?

What is the emotional journey of using the visualization?

How is the user a co-author in the experience?

Bonus pending time: foodsimsf.com

22.18 kg/hectare overall CPUE

Dynamic scaling enabled

Works Cited

G. Aisch, A. Cox, and K. Quealy, "You Draw It: How Family Income Predicts Children's College Chances." The New York Times Company, May 28, 2015. [Online]. Available:	[1]
https://www.nytimes.com/interactive/2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-chances.html	
R. Binx, "Vortex." 2015. [Online]. Available: https://rachelbinx.com/data-visualization/vortex	[2]
R. Binx, "Designing for Realtime Spacecraft Operations." BocoupLLC, Apr. 2016. [Online]. Available: https://www.youtube.com/watch?v=HuYKhSHcRSQ	[3]
Book Books Book, "We Feel Fine." YouTube, Dec. 2009. [Online]. Available: https://www.youtube.com/watch?v=vi8WrnWNSzU	[4]
W. S. Cleveland and R. McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods," Journal of the American Statistical Association, vol. 79, no. 387, pp. 531–554, Sep. 1984, doi: 10.1080/01621459.1984.10478080.	[5]
Flipflops, "I feel everything," Flipflops.org, Oct. 2007. [Online]. Available: https://www.flipflops.org/category/thoughtful/page/2/	[6]
	[7]
	[8]
Isle Royale National Park Michigan, "Wolf & Moose Populations." National Parks Service, Mar. 29, 2024. [Online]. Available: https://www.nps.gov/isro/learn/nature/wolf-moose-populations.htm	[9]
S. D. Kamvar and J. Harris, "We feel fine and searching the emotional web," in Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong China: ACM, Feb. 2011, pp. 117–126. doi: 10.1145/193	<u>35826.1935854</u> .
A. KIRK, DATA VISUALISATION: a handbook for data driven design. S.I.: SAGE PUBLICATIONS, 2024.	[10]
A. Kirk, "Visualizing Data." Visualising Data Ltd, 2024. [Online]. Available: https://visualisingdata.com/	[11]
T. Munzner, "A Nested Model for Visualization Design and Validation," IEEE Trans. Visual. Comput. Graphics, vol. 15, no. 6, pp. 921–928, Nov. 2009, doi: 10.1109/TVCG.2009.111.	[12]
T. Munzner. "Visualization Analysis and Design." AK Peters Visualization Series. 2014. [Online]. Available: https://books.apple.com/us/book/visualization-analysis-and-design/id1567434451	[13]
T Mustar Visualization and design in A.K. Detern visualization action. Reco Reter: CBC Brace, Taylor & Erennin Crown, CBC Brace is an imprint of the Taylor & Erennin Crown, an informa hubinoon, 2015	[14]
	[15]
T. Munzner, "Task Abstraction (Ch 3), Visualization Analysis & Design, 2021." YouTube, 2021. [Online]. Available: https://www.youtube.com/watch?v=pHljd-cgICY	[16]
M. Nix, Visual simplexity: die Darstellung großer Datenmengen. Frankfurt am Main: entwickler.press, 2013.	[17]
Periscopic, "U.S. Gun Deaths." Periscopic, 2018. [Online]. Available: https://guns.periscopic.com/	[40]
A. Pottinger, "FoodSim: San Francisco." 2023. [Online]. Available: https://foodsimsf.com/	[18]
	[19]

	[19]
A. Pottinger, "Income Gaps." 2023. [Online]. Available: https://incomegaps.com/	[20]
A. Pottinger, "Interactive Data Science." 2024. [Online]. Available: https://interactivedatascience.courses/	10.41
A. S. Pottinger et al., "Combining Game Design and Data Visualization to Inform Plastics Policy: Fostering Collaboration between Science, Decision-Makers, and Artificial Intelligence," 2023, arXiv. doi: 10.48550/ARXIV.2312.11359.	[21]
A. S. Pottinger, L. Connor, B. Guzder-Williams, M. Weltman-Fahs, and T. Bowles, "Climate-Driven Doubling of Maize Loss Probability in U.S. Crop Insurance: Spatiotemporal Prediction and Possible Policy Responses," 2024, arXiv. doi: 10.48550/ARXIV.2408.02217.	[22]
A S. Pattinger and G. Zamellan "Puategrap are: Open source multi-model Puttern basedtools for NOAA AESC PACE CAP" JOSS vol 8, no. 86, n. 5503, Jun. 2023, doi: 10.2110/jacs.05503	[23]
J. N. Rooney-Varga, F. Kapmeier, J. D. Sterman, A. P. Jones, M. Putko, and K. Rath, "The Climate Action Simulation," Simulation & Gaming, vol. 51, no. 2, pp. 114–140, Apr. 2020, doi: 10.1177/1046878119890643.	[24]
	[25]
J. Schell, The art of game design: a book of lenses, Third edition. Boca Raton: CRC Press/Taylor & Francis Group, 2020.	[26]
J. Snow, On the mode of communication of cholera. London: John Churchill, 1855. [Online]. Available: https://archive.org/details/b28985266/page/n57/mode/2up	[07]
J. Stasko, C. Gorg, Z. Liu, and K. Singhal, "Jigsaw: Supporting Investigative Analysis through Interactive Visualization," in 2007 IEEE Symposium on Visual Analytics Science and Technology, Sacramento, CA, USA: IEEE, Oct. 2007, pp. 13 10.1109/VAST.2007.4389006.	[27] 81–138. doi:
The Desument Foundation Litre Office (2024) The Desument Foundation	[28]
The Document Foundation, <i>Libreonice</i> . (2024). The Document Foundation.	[29]
ThoughtLab, The Wendy and Eric Schmidt Center for Data Science and Environment, and Benioff Ocean Science Laboratory, "A Treaty to End Plastic Pollution. Forever." University of California, 2023. [Online]. Available: https://plasticstreaty.berkeley.edu/	
B. Victor. "Inventing on Principle." CUSEC. 2012. [Online]. Available: https://www.youtube.com/watch?v=PUv66718DI	[30]
	[31]
B. Victor, "Media for Thinking the Unthinkable." MIT Media Lab, Apr. 04, 2013. [Online]. Available: <u>https://vimeo.com/67076984</u> .	[32]
Visual Computing BLOG, "Tamara Munzner discussed quantification in terms of a nested model of visualization design and evaluation." Transregional Collaborative Research Center. [Online]. Available:	
https://www.visual-computing.org/2018/10/17/computerscienceconterenceweek/201810_conterenceweek_munzher-2/	[33]
C. Ware, "Colin Ware The Data Visualzation Research Lab." University of New Hampshire. [Online]. Available: https://ccom.unh.edu/vislab/people/colin_ware/	[34]
C. Ware, Information visualization: perception for design, Fourth edition. Cambridge, MA: Morgan Kaufmann, 2021.	[34]
Wikinedia Contributors "Snow-cholera-map-1 ing " Wikimedia Foundation Inc. 2020 [Online] Available: https://en.wikinedia.org/wiki/File:Snow-cholera-map-1 ing	[35]
	[36]

Wikingdia Castributara "Drat Viatar" Wikingdia Faundatian Jan. Jun 22.2020 (Online) Augilablas https://on.uikingdia.arg/uiki/Drat Viatar	[36]
Wikipedia Contributors, Bret victor. Wikimedia Foundation, Inc., Jun. 22, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Bret_Victor	[37]
Wikipedia Contributors, "Star Wars: Galaxy's Edge." Wikimedia Foundation, Inc., Sep. 21, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Star_Wars: Galaxy%27s_Edge	[00]
Wikipedia Contributors, "It's a Small World." Wikimedia Foundation, Inc., Sep. 24, 2024. [Online]. Available: https://en.wikipedia.org/wiki/lt%27s_a_Small_World	[38]
N Yee "Metivations for Diav is Online Comes" OuterBayehology & Bahavier vol. 0, pp. 6, pp. 772, 775, Dec. 2006, doi: 10.1020/cpb.2006.0.772	[39]
Note, wouvalions for Flay in Online Games, Cyber Sychology & Denavior, vol. 9, no. 0, pp. $112-113$, Dec. 2000, doi: $10.1003/cpb.2000.9.112$.	

Thanks to https://unsplash.com/photos/DHI49oym7Y